66 research outputs found

    A new approach to engineering design

    Get PDF
    In the following paper, we present two components which have been used together to solve engineering design problems. Firstly, we recall some results on Reduced-Basis Output Bound methods which provide real-time outputs and their associated error estimators for a parametrized mathematical model. Then, we propose an original architecture – called SimRes– for scientific computing which itself comprises several components. Put together, these two components provide a complete solution for certain classes of engineering design problems in terms of numerical methods and software

    A posteriori error estimation for reduced-basis approximation of parametrized elliptic coercive partial differential equations: "Convex inverse" bound conditioners

    Get PDF
    We present a technique for the rapid and reliable prediction of linear-functional outputs of elliptic coercive partial differential equations with affine parameter dependence. The essential components are (i ) (provably) rapidly convergent global reduced-basis approximations – Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N selected points in parameter space; (ii ) a posteriori error estimation – relaxations of the error-residual equation that provide inexpensive bounds for the error in the outputs of interest; and ( iii ) off-line/on-line computational procedures – methods which decouple the generation and projection stages of the approximation process. The operation count for the on-line stage – in which, given a new parameter value, we calculate the output of interest and associated error bound – depends only on N (typically very small) and the parametric complexity of the problem; the method is thus ideally suited for the repeated and rapid evaluations required in the context of parameter estimation, design, optimization, and real-time control. In our earlier work we develop a rigorous a posteriori error bound framework for reduced-basis approximations of elliptic coercive equations. The resulting error estimates are, in some cases, quite sharp: the ratio of the estimated error in the output to the true error in the output, or effectivity , is close to (but always greater than) unity. However, in other cases, the necessary “bound conditioners” – in essence, operator preconditioners that (i ) satisfy an additional spectral “bound” requirement, and (ii ) admit the reduced-basis off-line/on-line computational stratagem – either can not be found, or yield unacceptably large effectivities. In this paper we introduce a new class of improved bound conditioners: the critical innovation is the direct approximation of the parametric dependence of the inverse of the operator (rather than the operator itself); we thereby accommodate higher-order (e.g., piecewise linear) effectivity constructions while simultaneously preserving on-line efficiency. Simple convex analysis and elementary approximation theory suffice to prove the necessary bounding and convergence properties

    Reduced-basis Output Bound Methods for Parametrised Partial Differential Equations

    Get PDF
    An efficient and reliable method for the prediction of outputs of interest of partial differential equations with affine parameter dependence is presented. To achieve efficiency we employ the reduced-basis method: a weighted residual Galerkin-type method, where the solution is projected onto low-dimensional spaces with certain problem-specific approximation properties. Reliability is obtained by a posteriori error estimation methods - relaxations of the standard error-residual equation that provide inexpensive but sharp and rigorous bounds for the error in outputs of interest. Special affine parameter dependence of the differential operator is exploited to develop a two-stage off-line/on-line blackbox computational procedure. In the on-line stage, for every new parameter value, we calculate the output of interest and an associated error bound. The computational complexity of the on-line stage of the procedure scales only with the dimension of the reduced-basis space and the parametric complexity of the partial differential operator; the method is thus ideally suited for the repeated and rapid evaluations required in the context of parameter estimation, design, optimization, and real-time control. The theory and corroborating numerical results are presented for: symmetric coercive problems (e.g. problems in conduction heat transfer), parabolic problems (e.g. unsteady heat transfer), noncoercive problems (e.g. the reduced-wave, or Helmholtz, equation), the Stokes problem (e.g flow of highly viscous fluids), and certain nonlinear equations (e.g. eigenvalue problems)

    Reduced-basis output bound methods for heat transfer problems

    Get PDF
    We describe a technique for the rapid and reliable prediction of outputs of interest, of elliptic partial differential equations with affine parameter dependence. To achieve efficiency, the reduced-basis method is used; reliability is obtained by the development of relevant a posteriori error estimators. We apply this method to the problem of designing a thermal fin, to effectively remove heat from a surface. A number of design parameters=inputs are considered. Each possible configuration, corresponding to different choices of the design parameters, needs to be evaluated by solving the heat conduction equation and calculating certain outputs of interest like the average temperature on the fin base

    A spectral element reduced basis method in parametric CFD

    Get PDF
    We consider the Navier-Stokes equations in a channel with varying Reynolds numbers. The model is discretized with high-order spectral element ansatz functions, resulting in 14,259 degrees of freedom. The steady-state snapshot solutions define a reduced order space, which allows to accurately evaluate the steady-state solutions for varying Reynolds number with a reduced order model within a fixed-point iteration. In particular, we compare different aspects of implementing the reduced order model with respect to the use of a spectral element discretization. It is shown, how a multilevel static condensation (Karniadakis and Sherwin, Spectral/hp element methods for computational fluid dynamics, 2nd edn. Oxford University Press, Oxford, 2005) in the pressure and velocity boundary degrees of freedom can be combined with a reduced order modelling approach to enhance computational times in parametric many-query scenarios

    Model Order Reduction for Rotating Electrical Machines

    Full text link
    The simulation of electric rotating machines is both computationally expensive and memory intensive. To overcome these costs, model order reduction techniques can be applied. The focus of this contribution is especially on machines that contain non-symmetric components. These are usually introduced during the mass production process and are modeled by small perturbations in the geometry (e.g., eccentricity) or the material parameters. While model order reduction for symmetric machines is clear and does not need special treatment, the non-symmetric setting adds additional challenges. An adaptive strategy based on proper orthogonal decomposition is developed to overcome these difficulties. Equipped with an a posteriori error estimator the obtained solution is certified. Numerical examples are presented to demonstrate the effectiveness of the proposed method

    Spectral Methods for Numerical Relativity

    Full text link

    Finite Spectral Method for Non-Periodic Problems

    No full text
    http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000173667000139&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Mathematics, AppliedMechanicsCPCI-S(ISTP)
    • …
    corecore